20 Şubat 2012 Pazartesi

Matematikte Sayıların Bölünebilme Kuralları

Bölünme Kuralları, matematikte sayıların 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 25 sayılarına kalansız olarak bölünüp bölünemediklerini bölme işlemi yapmadan anlamaya yardımcı olan kurallarıdır.

1'e bölünme kuralı

Her rakam 1'e bölünür, sonuç her zaman sayının kendisi, kalan her zaman 0 (sıfır) dır.

2'ye bölünme kuralı

Son rakamı çift sayı ise bölünür.


3'e bölünme kuralı

Rakamları toplamı 3 veya üçün katlarıysa bölünür

4'e bölünme kuralı

Son iki rakamı 4 ile kalansız bölünüyorsa bölünür

5'e bölünme kuralı

Son rakamı 0 veya 5 ise bölünür

6'ya bölünme kuralı

Sayı hem 2'ye hem 3'e kalansız bölünebiliyorsa 6'ya da bölünür.

7'ye bölünme kuralı

Sayı abc şekinde ise sayının üstüne 312 yazılır sayı ile çarp sayı 7 nin katı ise tam bölünür

8'e bölünme kuralı

Son üç rakamı sekize kalansız bölünüyorsa bölünür.

9'a bölünme kuralı

Rakamları toplamı 9 veya dokuzun katlarıysa bölünür.

10'a bölünme kuralı

Son rakamı 0 ise bölünür

11'e bölünme kuralı

Bir sayının 11 ile tam olarak bölünebilmesi için, sayının rakamlarının altına birler basamağından başlayarak sırasıyla +, -, +, -, ... işaretleri yazılır, artılı gruplar kendi arasında ve eksili gruplar kendi arasında toplanır, genel toplamın da 0, 11 veya 11 e bölümünde kalanı 0 olan bir sayı ise 11'e tam bölünür.

13'e bölünme kuralı

Sayıyı X=10a+b şeklinde yazdığımızda a+4b sayısı 13'e kalansız bölünüyorsa bölünür.

17'ye bölünme kuralı

Sayıyı X=10a+b şeklinde yazdığımızda a-5b sayısı 17'ye kalansız bölünürse bölünür.

19'a bölünme kuralı

Sayıyı X=10a+b şeklinde yazdığımızda a+2b sayısı 19'a kalansız bölünürsa bölünebilir.

25'e bölünme kuralı

Son iki rakamı 25, 50, 75, veya 00 olmalıdır.

ÖRNEKLER

Örnek 1:

Rakamları farklı 5 basamaklı 9452X sayısının 2 ile bölünebilmesi için, X değerlerinin toplamı kaç olmalıdır? Çözüm: 9452X sayısının 2 ile bölünebilmesi için, X in alabileceği değerler 0, 2, 4, 6, 8 olmalıdır. Oysa, bu sayının rakamlarının farklı olması istendiğinden, X rakamı 2 ile 4 olamaz. Dolayısıyla, X in alabileceği değerler 0, 6, 8 dir. Bu değerlerin toplamı 0 + 6 + 8 = 14 olur.

Örnek 2:

5 basamaklı 1582A sayısının 3 ile bölünebilmesini sağlayan A değerlerinin toplamı kaçtır? Çözüm: Bir sayının 3 ile bölünebilmesi için, sayının rakamları toplamının 3 ün katları olması gerektiğinden, 1 + 5 + 8 + 2 + A = 3 . k olmalıdır. Buradan, 16 + A = 3 . k olur. Böylece, A 2, 5, 8 değerlerini alması gerekir. Dolayısıyla, bu değerlerin toplamı 2 + 5 + 8 = 15 olarak bulunur.

Örnek 3:
İki basamaklı mn sayısı 3 ile tam olarak bölünebilmektedir. Dört basamaklı 32mn sayısının 3 ile bölümünden kalan kaçtır? Çözüm: mn sayısı 3 ile tam olarak bölünebildiğine göre, m + n = 3 . k olması gerekir. O halde, 32mn sayısının 3 bölümünden kalan şöyle bulunur: 3 + 2 + m + n = 5 + ( m + n ) = 5 + 3 . k = 3 + 2 + 3 . k = 2 + 3 . k Dolayısıyla, Kalan = 2 dir. Örnek 4: Dört basamaklı 152X sayısının 4 e bölümünden kalan 2 olduğuna göre, X in alabileceği değerler toplamı kaçtır? Çözüm: 152X sayısının 4 e tam olarak bölünebilmesi için, sayının son iki basamağının yani 2X in, 4 ün katları olması gerekir. O halde, X, 0, 4, 8 ... (1) değerlerini alırsa, 152X sayısı 4 e tam olarak bölünür. Kalanın 2 olması için, (1) nolu değerlere 2 ilave edilmelidir. Bu taktirde, X, 2, 6 değerlerini almalıdır. Dolayısıyla, bu değerlerin toplamı 2 + 6 = 8 olur. Örnek 5: 666 + 5373 toplamının 4 e bölümünden kalan kaçtır? Çözüm: 666 nın 4 e bölümünden kalan şöyle bulunur: 66 nın 4 e bölümünden kalana eşit olup, kalan 2 dir. 5373 ün 4 e bölümünden kalan şöyle bulunur: 73 ün 4 e bölümünden kalana eşit olup, kalan 1 dir. Bu kalanlar toplanarak, toplamın kalanı 2 + 1 = 3 bulunur. Örnek 6: 99999 . 23586 . 793423 . 458 çarpımının 5 e bölümünden kalan kaçtır? Çözüm: Bir sayının 5 e bölümünden kalanı bulmak için, birler basamağına bakılması gerekir ve birler basamağındaki rakamın 5 e bölümündeki kalana eşittir. Dolayısıyla, 99999 sayısının 5 e bölümünden kalan 2 dir. 23586 sayısının 5 e bölümünden kalan 1 dir. 793423 sayısının 5 e bölümünden kalan 3 tür. 458 sayısının 5 e bölümünden kalan 3 tür. Bu kalanların çarpımı, 2 . 1 . 3 . 3 = 18 olur. 18 in 5 e bölümünden kalan ise, 3 tür. Örnek 7: Rakamları birbirinden farklı dört basamaklı 3m4n sayısı, 6 ile tam olarak bölündüğüne göre, m + n in en büyük değeri kaçtır? Çözüm: Bir sayının 6 ile tam olarak bölünebilmesi için, sayının hem 2 ile hem de 3 ile tam olarak bölünmesi gerekir. 3m4n sayısının 2 ye tam olarak bölünebilmesi için, n nin 0, 2, 4, 6, 8 olması gerekir. m + n nin en büyük olması için, n = 8 olmalıdır. Böylece, 3m4n sayısı, 3m48 olur. 3m48 sayısının, aynı zamanda, 3 e bölünmesi gerektiğinden, 3 + m + 4 + 8 = m + 3 olur ve böylece m, şu değerleri alabilir: 0, 3, 6, 9 m + n nin en büyük olması için, m = 9 alınmalıdır. Dolayısıyla, m = 9 ve n = 8 için, m + n nin en büyük değeri, m + n = 9 + 8 = 17 olur. Örnek 8: Beş basamaklı m362m sayısı, 7 ile tam bölündüğüne göre, m nin alabileceği değerlerin toplamı kaçtır? Çözüm: (132) kuralını kullanmalıyız. m 3 6 2 m = ( m.1 + 2.3 + 6.2 ) - ( 3.1 + m.3 ) = m + 6 + 12 - 3 - 3m = - 2m + 15 3 1 2 3 1 - + - 2m + 15 = 7.k Buradan m = 4 olur. Örnek 9: 458028 sayısının 8 e bölümünden kalan kaçtır? Çözüm: Bir sayının 8 ile bölümünden kalanı bulmak için, sayının son üç basamağının 8 ile bölümünden kalanına bakılmalıdır. Dolayısıyla, 28 sayısının 8 ile bölümündeki kalanı bulmalıyız. 28 in 8 ile bölümünden kalan 4 tür. O halde, 458028 sayısının 8 e bölümünden kalan, 4 tür. Örnek 10: 10 basamaklı 4444444444 sayısının 9 ile bölümünden kalan kaçtır? Çözüm: Sayının rakamlarının toplamını alıp, 9 un katlarını atmalıyız. Rakamların toplamı: 4 . 10 = 40 dır. Buradan, 4 + 0 = 4 bulunur. O halde, 4444444444 sayısının 9 a bölümündün kalan 4 tür. Örnek 11: Dört basamaklı 268m sayısının 10 ile bölümünden kalan 3 olduğuna göre, m kaç olmalıdır? Çözüm: Bir sayının 10 a bölümünden kalanı bulmak için, birler basamağına bakılmalıdır. Sayınnı birler basamağındaki rakam kaç ise, kalan odur. Bu nedenle, 268m sayısının 10 ile bölümünden kalan 3 olduğuna göre, m = 3 olmalıdır. Örnek 12: Dokuz basamaklı 901288563 sayısının 11 ile bölümünden kalan kaçtır? Çözüm: 9 0 1 2 8 8 5 6 3 + - + - + - + - + Kalan = ( 9 + 1 + 8 + 5 + 3 ) - ( 0 + 2 + 8 + 6 ) = 26 - 16 = 10 olarak bulunur. Örnek 13: Beş basamaklı 5m23n sayısının 30 ile tam olarak bölünebilmesi için, m ve n nin hangi değerleri alması gerekir? Çözüm: Bir sayının 30 ile tam olarak bölünebilmesi için, hem 10 ile hem de 3 ile tam olarak bölünmelidir. Bir sayının 10 ile tam olarak bölünebilmesi için, sayının birler basamağının 0 olması gerekir. Dolayısıyla, n = 0 olmalıdır. Böylece, verilen sayı 5m230 olur. Bir sayının 3 ile tam olarak bölünebilmesi, sayının rakamları toplamının 3 ün katları olması gerekir. Dolayısıyla, 5 + m + 2 + 3 + 0 = 3.k m + 10 = 3.k m = 2, 5, 8 olur. O halde, m = 2, 5, 8 ve n = 0 olmalıdır.

1 yorum:

Adsız dedi ki...

Bloğunuzdan oldukça faydalanıyoruz yazmış olduğunuz makaleleri arkadaşlarımızada tavsiye ediyoruz. Estetik burun ameliyatı firmamız çalışmalarınızda kolaylık diler.